
T H E O R Y  O F  " H O T "  C R A C K S  

V. D. K u l i e v  a n d  G. P .  C h e r e p a n o v  UDC 539.375 

During the solidification of a welding seam, there somet imes  develop in it so-ca l led  ~hot ~ 
cracks ,  leading to a defect in the ar t icle .  An analogous phenomenon of the format ion of npits~ 
and voids in ingots is observed during the metal lurgical  p rocess .  There is considered below 
a theoret ical  model, within whose f ramework  the problem of the formation and development 
of a hot c rack  can be solved. The solution of this problem permi t s  compar ing different t he r -  
mal conditions and select ing the most  favorable.  A statement of the problem is given and the 
fundamental assumptions a re  formulated.  A study is made of the kinetics of the growth of a 
hot crack.  The question of the asymptot ic  dimension of hot c racks  with t ~ o  is discussed,  
and simple sufficient conditions are  given, with whose sat isfaction a hot c rack  is not formed. 
A study is made of the development of a c rack  in the mathematical ly  s imi lar  problem of 
bri t t le  failure f rom local heating. 

1. S t a t e m e n t  o f  P r o b l e m  

At the initial moment of t ime, in contact with a solid metal having some constant t empera ture  T =0, 
let there  be a melt which solidifies instantaneously, so that, at the initial moment, its t empera ture  is con-  
stant and equal to T =T 0. As a resul t  of the solidification of the hot metal, elongational s t r e s s e s  develop 
in the region occupied by it, since, at the contact boundary, the metals  are  assumed to be rigidly welded. 
With the passage of t ime, the elongational s t r e s s e s  r ise,  bringing about a growth of the initially most 
dangerous c rack  or  of some equivalent defect. With t ~ ~o, the residual  s t r e s se s  and the dimension of the 
hot c rack  will be maximal. 

We shall assume that the metals  are  thermoelas t ic  bodies, so that all the plastic effects will be con-  
centra ted only in small  regions near  the contour of the crack.  In this case,  the problem posed with respect  
to the development of a hot c rack  can be solved within the f ramework  of the mechanics  of bri t t le  failure [1]. 

We introduce also the following assumptions:  a) all the thermoelas t ic  constants  are  independent of 
the t empera tu re  and are  identical for  both cold and hot metal; b) the metals  are  homogeneous and isotropic 
bodies; c) these metals  are  in a plane state of s t r e s s  (a thin plate). These assumptions are  not of a funda- 
mental charac te r ;  however, they permit  finding a simple effective solution to many prac t ica l ly  important 
problems,  and bringing out some of the fundamental qualitative effects. As is well known, the solutions ob-  
tained can be used also for the case of plane deformation,  if the elast ic  coefficients are  replaced. 

Let us formulate a simplified problem. At the moment t =0, let an a r b i t r a r y  region S in an infinite 
homogeneous and isotropic elast ic  plate be instantaneously heated to a constant tempera ture  T =T 0. The r e -  
maining par t  of the body has the tempera ture  T = 0 with t =0. At the boundary of the region S, there  is no 
discontinuity of the displacement;  this co r responds  physical ly to a replacement  of the region S by a heated 
disk of exactly the same dimensions.  It is requi red  to determine the development of the initial c rack  with 
t ime. The displacements ,  the s t r e s ses ,  and the principal  vec tor  of the forces  (as well as the rotation) at 
an infinitely distant point a re  assumed equal to zero.  

2.  K i n e t i c s  o f  t h e  G r o w t h  o f  a H o t  C r a c k  

In the above statement of the problem, let the region S be a rectangle with the sides 2 x 0 and 2 Y0- 
We take the origin of the Car tes ian  coordinates  x and y at the center  of the rectangle,  and we direct  the x 
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axis pa ra l l e l  to that  side whose length is equal to 2 x 0 (Fig. 1). Let  
an initial c r ack  of length 2 l be d isposed  along the x axis ,  with its 
cen te r  at the or ig in  of coordinates .  The s ides  of the c r ack  a re  f ree  
of ex te rna l  loads. For  the p re sen t  p rob lem,  with an a c c u r a c y  of 
approx imate ly  10%, the coefficient  of the intensi ty of the s t r e s s e s  at  
the end of the c r ack  holds a lso  for  the case  where the boundary of 
the body is f ree  of ex terna l  loads along the y axis .  

The o r d e r  of the solution of the p r o b l e m  will be the following. 
The t e m p e r a t u r e  field is de te rmined  f i rs t ;  then, the s t r e s s  (ry with 
y =0 I x[ < 1 is found f rom the equations of t he rmoe la s t i c i t y  for  a body 
without a c rack;  this  s t r e s s ,  with the opposite sign, is subst i tuted 

into the well-known genera l  express ion  for  the coeff icient  of the intensi ty of the s t r e s s e s  in the case  of an 
i so la ted  c rack  and of an i so the rmal  p roces s .  The dependence of the constant  K on the t e m p e r a t u r e  outside 
of the in terva l  of cold b r i t t l eness  can be in terpola ted  using the following l inear  function: 

K~ = K~o ~- A T  (l, O, t) (2.1) 

where  Kc0 is the constant  K c with T =0; A is some empi r i ca l  constant.  Equating K I =Ke, in accordance  with 
the G r i f f i t h s - I r v i n  condition we obtain in implici t  f o r m  the sought dependence of the length of the c r a c k  on 
the t ime.  

The solution of the boundary-value  p rob lem 

02T 02T i OT 
Ox ~ ~ - - ~ =  a Ot ( - - ~ < x , y < + ~ )  

To = const (x, y ~ S) (2.2) 
T =  0 ( x , y ~ S )  w i t h t = 0  

will be the following [2]: 

T ( x , y , t ) :  T~ IEr f  [ X + x ~  ~ ~o--x y §  [yo - -yO]  

g 

Err (z) ----- exp (-- u ) du 
0 

(2.3) 

where  a is the coefficient  of t h e r m a l  diffusivity. 

The coeff ic ients  of the s t r e s s  t enso r  (~x, Cry, Txy a re  e x p r e s s e d  in t e r m s  of the t he rmoe l a s t i c  poten-  
t ial  of  the d i sp lacements  ~ in the f o r m  [2] 

(2.4) 

AW = (i -4- ~)~T (2.5) 

where G is the shear modulus; ~ is the Poisson coefficient; ~ is the coefficient of linear expansion. 

Differentiating (2.5) with respect to t, and taking account of (2.2), we obtain 

A[0~ / ~t - -  (1 ~- ~)aaT] = 0 (2.6) 

As can be seen, the function 0 ~ / 0 t  - (1 + ~) s a t  is ha rmonic  ove r  the whole plane and, consequently,  
can be e i ther  a constant  quanti ty or  some function of the t ime g (t). With des t roying  the genera l i ty ,  the 
function g (t) can be a s s u m e d  equal to zero ,  since, instead of the potential  ~ ,  the following potential  can be 
introduced 

t 

0 

Thus, an equation is obtained for  the potent ial  

OT / Ot = (1 ~- ~)aaT 
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Integrating it leads to the formula 

t (2 .7)  
tF = (i q- ~) aa l Tdt q- Wo (x, y) 

0 

where '~0 (x, y) is the potential of the displacements corresponding to the initial tempera ture ,  i.e., 

AT0 = (l + v)aTo inside of S, A~0 = 0 outside of S_. 

F rom this we obtain 

~o (x, y) = ~-~ dd 
S 

\ ; 

Using (2.3), {2.7), (2.8), and (2.4) we find 

+ [  {Y+Y~176 ~ = GTo4(tyK + v) u [~'4 ~f~--z (x, y) -}- arc tg 1 x + xoJ I x--~-~-- x) 

t 

tg/Y~ ~-arctg(Y~247 - i - - -  r~[(x + xo)exp ( (x § + (Xo- -x )exp( - - (~~  -~ arc \ xo § x/ \ xo -- xi.j 4a'r ] 
0 

1 (x,g~S) 
E r f ( ~ ) ] d ~ }  •  0 ( x , y ~ S )  

Since the coefficient of the intensity of the s t r e s se s  for an isolated crack is 

! 

Kr = V'~- - z  

then, using (2.9), we find 
l 

GTo(l +v)a _, + t [ a r c t g ( ~ x o  ) + aretglx__~_.~_~/jV ~.2_~_~_ ~ ~ _  

21f~ z ~ ~ /-t-(Xo--~) Err yo t §  dxd~} 

(2.10) 

With t -- oo, we have 

In accordance with (2.11) the length of the hot crack formed is 

(2.11) 

K~ with t -> ~ (2.12) l~ = ~ [aro(1 + v)al2 

It is assumed that the c rack  does not go beyond the region S. 

For  any given moment of t ime,  on the basis  of the cr i ter ion of local failure,  KI =K c, and (2.1), (2.10), 
we find 

Kc0(l + ~ Erf ( ~ ) [ E r f  \ 2 ~ ]  [~ +x0~ ~_ Erf [ ~ ) ] ~  : \ 2  Fa /j) Ki(l , t)  (2.13) 

t tere  the f i r s t  part  is determined by formula (2.10). Figure 2, in the dimensionless var iables  l .  = 
l//oo and t ,  =4at/xo 2, gives curves 1, 2, 3 for the kinetics of the growth of a hot crack, plotted using Eqs. 
(2.10) and (2.13), for the following values of the paramete rs :  x 0 =yo = l~o, A = K c 0 / T  0, Ke0/2T0, 0, respec-  
tively. We note that the calculations were made in a BI~SM-4 digital computer in a few minutes. 

3.  A s y m p t o t i c  D i m e n s i o n  of  H o t  C r a c k s  

We f i rs t  prove a theorem f rom the theory of thermoelas t ie i ty  for an a rb i t r a ry  singly connected re -  
gion S. 
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THEOREM. With t =0 let  

T (x, y, 0) ---- To insicle of S, T (x, y, 0) = 0 outside of S. (3.1) 

Then, with t --* ~ (ry =(r x = - G  (1 + ~) ~T0, ~'x, y =0 inside 
of S. 

Proof .  The solution of the equation of the rmal  con-  
ductivity (2.2) satisfying conditions (3.1) has the fo rm 

T (x,  t) = I I  (-- / = (x  - -  + - -  
~s - (3.2) 

Analogously to what has gone before ,  using (2.5)-(2.8) we find the potential  

(x, y, t ) -  (1 ~4uv)aTo [o ~ + [ i  l exp (-- R~/4a~)d~ d~]] d~- 2Is ~ In (----~)d~ d~]} 

Since the contour of the region S does not depend on the t ime t, we obtain 

t 

~F(x, y, t ) =  (' + , ,  ~T04n I f [ i +  e x p ( -  R ' /4a , )d , - -  2 In ( ~----)] d~d~l 
S 0 

(3.3) 

(3.4) 

Using (2.4) we find the s t r e s s e s  inside of S 

% = --  G (i + v) aT0 
t 

S 0 
l 

G(i ~-2_~v) aTo If {2 (x--~)2--(Y--T])sR4 ~- 0I -~-;~- (Y-- n ) l  2 -- 2av] oxp (-- R2/4av)d~}d~d~ 

t 
"xu = 2G(i +v)aTo "i (x-- ~ Y - -  ~l) [ i  -- i ~  "~'exp ( - / {3 /4a , )  

~ o 

Calculating the internal  integrals  in formulas  (3.5) we have 

i l 
~v = - - G ( I  + v)~T0 {t +- -~- I f -~  [(Y--~)2--(x--~)~ + 2(x--~)~r(2, R~/4at)--R~exp(--R~/4at)]d~d~l} 

S 

--~l i i  ~__~[(x__ ~)~ (y__ ~l) ~ + 2(y- -  ~l)~r(2, R~/4at)--t{~exp(--R~/4at)]d~d~]} 6x = -- G (i + v) aTo tl + 
S 

TxU G(I + v)cLT~ 4(~--~)(Y--I])I{ 
js J ~-~ L- -- r(2, R~/4at)]d~dT1 

oo 

F (a, x) ~ l e-tt~-I dt (3.6) 
x 

Since r (2, RZ/4at) - -  1 with t - -  r then, passing to the l imit  with t -~ co in (3.6), we obtain 

~y = ~ ---- - -  G (t  + ~) ~T0,  T~y = 0 (3 .7 )  

Thus, in the region S, with t --- :o the residual  s t r e s s e s  c rea te  a state of isotropic uniform elongation. 
We note that b i la tera l  elongation promotes  br i t t le  fai lure to a g rea t e r  degree  than uni la teral  elongation [1]. 

The theorem proved pe rmi t s  finding the asymptot ic  dimension /~o of a hot c rack  with t ~ ~o for  the 
a rb i t r a r y  region S; this dimension, as before ,  is obviously given by formula  (2.12), under the sole condition 
that the c rack  does not go beyond the region S. It follows f rom this that, if the length of the initial c r ack  
2/o is sma l l e r  than 2/oo, i .e. ,  if the following condition is satisfied 

lo < K~ s / ~ [GTo (t + v) ~] ~ (3.8) 

then, the initial c rack  does not develop. Formula  (3.8) furn ishes  a simple sufficient c r i te r ion;  when it is 
satisfied, a hot c rack  is not formed.  We note that the cha rac t e r i s t i c s  of the mater ia l  l 0 and K 0 in (3.8) c o r -  
respond to solidified metal  with T =0. 
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4 .  B r i t t l e  F a i l u r e  F r o m  L o c a l  H e a t i n g  

With t =0, let a discontinuity of the normal  displacement a r i se  
at the boundary of the region S, corresponding to the instantaneous 
heating of the disk S up to the t empera tu re  To, if, before heating, the 
disk was inser ted without c learance  (the t empera tu re  of the r ema in -  
ing par t  of the body is equal to zero  with t =0). As a result ,  e longa-  
tional s t r e s s e s  a r i se  in the body outside of the region S, which can 
lead to the formation of a crack.  The s t r e s s e s  in the disk will be 
compress ive .  With t - -  ~ ,  in this case  the s t r e s s e s  in the whole 
body will obviously tend to zero.  With t =0, the s t r e s s e s  will be 

greatest ;  here  a state of i sot ropic  uniform compress ion  is set up in the disk 

(~ = (~ = --  G (1 -? "~)aTo, l:~y = 0 witht  = 0 
(4.1) 

It is evident that in this case a crack is formed instantaneously, and then does not develop further. 

The above-described mechanism of brittle failure is typical for the local heating of an unbroken 
material (for example, the formation of a crack in a thick-walled glass when hot water is poured into it 
suddenly). 

In a majority of practically important cases, for brittle materials the length of a crack forming as a 
result of local heating is far greater than the characteristic linear dimension of the region S. In this latter 
region, a simple asymptotic method, based on the ~microscope principle" can be used to solve the problem 

[11. 

We postulate that at the points A and C c racks  go out toward the contour of the region S (Fig. 3). For  
s impl ic i ty  we assume that the region S is symmet r i ca l  with respect  to the x and y axes. S t resses  (from the 
side of the disk) determined by formula  (4.1) will be applied to the boundary of the region S. 

Let us determine the dimensions of asymptot ical ly  large cracks .  On the basis  of the microscope  
principle [1], used in this case,  when the l inear dimensions of the region S are  small  in compar i son  with the 
length of the c rack  (or with its radius,  in the ax i symmet r i c  case), we a r r ive  at the following singular 
proble ms. 

Plane Problem.  To the opposing sides of a rec t i l inear  through crack  of length 2l ,  existing in an infi- 
nite plate, let there  be applied the directed concentrated forces  P; the force P acts  in the middle of the 
crack,  perpendicular ly  to its surface.  At infinity there  is no s t r e s s .  Using (4.1), we find the principal 
vec to r  of the loads applied to the arc  ABC f rom the side of the heated region S (see Fig. 3) 

P = G ( I + v )  ctTo f cos(n,y) ds-~G(i+v)aToL (4.2) 
A B C  

where L is the length of the project ion of the a rc  ABC on the x axis. 

In the case  under consideration,  the coefficient of the intensity of the s t r e s s e s  [1] is 

KI = P / n V'2-/ (4.3) 

In accordance  with the c r i t e r ion  of local failure,  the length of a br i t t le  c r ack  is determined by the 
condition K I =Kc, i.e., 

K~ = P / ~ V 2t (4.4) 

F r o m  this we find the length of asymptot ical ly  large  cracks  

l = --2-. " ~K~ (4.5) 

Axisymmet r i c  Problem.  Let some region V, having three planes of symmet ry ,  be heated instanta-  
neously to a t empera tu re  T O at the initial moment  of t ime. As a resul t  of instantaneous bri t t le failure,  a 
disk-shaped c r ack  is fo rmed and, in the most  frequently encountered case, when its radius is great  in 
compar ison  with the dimension of the region V, on the basis of the microscope principle [1] we a r r ive  at 
the following problem. 
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To the opposing su r f aces  of a round  d i sk-shaped  c rack  of radius  R, located in an infinite body, let 
t he re  be applied the equal and opposi te ly  d i rec ted  fo rces  P; the force  P ac t s  along the axis  of  the round 
d i sc - shaped  c rack .  In th is  case ,  we obviously have 

p = G (i + ~) ~T0 II (n~ds) = G (l  + ~) ~ToSo (4.6) 

where S 0 is the a r e a  of the project ion of the boundary of thereg ionV on the plane of the crack.  

The coeff icient  of the intensi ty of the s t r e s s e s  is [1] 

g i  = P~ (~R)'/~ (4.7) 

Using the c r i t e r ion  of local  fa i lure  KI=KIc  , we find the radius  of the d i sk -shaped  c rack  

R = ~-1 [G(t ~- v) aToSo / KI~]"' (4.8) 

Fo r  example ,  in the case  of  an el l ipsoidal  region V, we have 

So = 5ab, Tl ~ ~-1 [4G (t -~ ~) aabTo / Kic]'/o (4.9) 

Here  a and b a r e  the pr inc ipa l  s e m i - a x e s  of the ell iple in a c r o s s  sect ion of the e l l ipsoid  of a d isk-  
shaped c rack .  
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